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Abstract—In recent years, the rapid development of Internet
of Things (IoT) and big data shows the huge demand of outsourc-
ing computing in cloud computing to assist some clients with low
ability devices to fulfill massive data processing. In the mean time,
considering the uncertainty of the Internet devices, we should
persist security and high-efficiency. Uploaded data and returned
results should be protected from attack of adversary, which guar-
antees the security, while efficiency requires low overhead of
clients to finish the whole calculation procedure. In this paper,
we main focus on the public verifiable outsourcing scheme on
matrix multiplication, which can be applied in many IoT scenes,
such as path planning and aggregation operation in Internet
of Vehicles and smart grids, respectively. Specially, this paper
presents schemes for two different functions of matrix multipli-
cation, which strengthens the applicability. Moreover, security
analysis and performance evaluation in this paper properly
present the superiority of this paper.

Index Terms—Applicability, efficiency, performance, Internet
of Things (IoT), matrix multiplication, outsourcing scheme,
security.

I. INTRODUCTION

AS THE development of Internet of Things (IoT) [1], the
devices with weak ability in computation are not limited

in traditional devices. Some devices. Example includes smart
thermostats, LED light bulbs, programmable and intelligent
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cars [2]–[4], which may perform computations with the help
of cloud computing [5]–[8] to achieve specific tasks, such
as drone navigation, intelligent transportation and so on.
Accordingly, outsourcing computing utilizing cloud, has been
increasingly approved to execute users’ complex task due to
advantage of tremendous compute power, and further pro-
moted the rapid development of IoT, where the client devices
can acquire the on-demand service for computation from the
cloud server with huge computation ability.

Naturally, as the cloud server is a untrusted
platform [9]–[12], security of data in IoT is becoming
a major problem. Besides, data generated by the IoT, verifi-
cation of results correctness becomes increasingly important.
While uploaded data, i.e., inputs and outputs, may contain
sensitive information, the client must be convinced of the
security of those data [13]–[15]. To assure the correctness of
results returned by the untrusted server, the results will be
verified utilizing verification proofs. Crucially, for the client,
the process of verification and data protection must be quite
compared with the process of function operation.

In delegation, most work of verification is conducted by
the client. However, it is necessary to verify the results by
any other trusted third party [16]. For instance, the computa-
tion results should be verified by several clients with different
secret keys, or the results are demanded by the other party.
In IoT, the third party can be some regulators. Public verifi-
cation prove to be useful in applications and simultaneously
alleviates the computation cost of the client.

In our scheme, we consider the outsourcing computation
of matrix multiplication, which can be applied for many
aspects [17]–[20], e.g., image processing [21], large-dataset
processing [22], the brain model in artificial intelligence.
Considering some scenes of IoT, algorithms of aggregation
operation in smart grid and path planning in pilotless devices
also need outsourcing computation of matrix multiplication.
As the increasing demand of matrix multiplication, the relevant
delegation researches are meaningful.

A. Related Work

With the fast development of outsourcing
computation [23], [24], several schemes focus on this research
orientation. Hohenberger and Lysyanskaya [25] proposed an
outsourcing scheme for modular exponentiation. Although

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 15:05:09 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0003-0385-8793
https://orcid.org/0000-0001-5720-0941


ZHANG et al.: VERIFIABLE OUTSOURCING COMPUTATION FOR MATRIX MULTIPLICATION WITH IMPROVED EFFICIENCY AND APPLICABILITY 5077

in this paper, cloud computing does not appear extensively
and is low in efficiency, this scheme still enlightens the
following work. Atallah and Frikken [26] delegated expensive
linear algebraic computations, especially for large matrices,
with security and privacy. In the same year, combining fully
homomorphic encryption (FHE) [27] and Yao’ garbled cir-
cuit [28], Gennaro et al. [10] proposed a scheme. This scheme
provides the formalized definition of noninteractive verifiable
outsourcing computation using the pseudo-random functions
(PRF). Although FHE is widely applied in data encryption for
delegation schemes [10], [29]–[36], the computation overhead
of this approach is too huge for application. Backes et al. [30]
proposed a novel cryptographic scheme for quadratic poly-
nomials, a class of computations over a large number of
variables. However, it is hard for this scheme to be applied
for some special functions [37]. Wang et al. [38] proposed
a secure outsourcing scheme of widely applicable linear pro-
gramming computations, which is greatly helpful in the future.

In our scheme, we focus on the delegation of matrix
multiplication as many other schemes do. In [29], Fiore’s
scheme provides a public verifiable delegation for linear
operation, e.g., matrix multiplication. This scheme does not
give the concrete encryption scheme of FHE, while the
high-efficiency cannot be promised using FHE and PRF.
Schemes [39] and [40] both improve [29] in matrix multi-
plication with a constant matrix. Feng and Safavi-Naini [39]
showed an encryption scheme, while it also brings problems
in computation overhead. Fiore and Gennaro [29] optimized
the process in producing verification tags. In this scheme, the
efficiency can be improved to some extent, while the encryp-
tion scheme has some drawbacks. Furthermore, aiming at
matrix multiplication with two alterable matrices, Jia et al. [41]
encrypted matrices ingeniously. But the outputs of its algo-
rithm are exposed to the cloud server entirely, thus data
privacy cannot be guaranteed. Nowadays, many researches are
continually devoting their efforts to available applications.

B. Our Contribution

In this paper, we focus on the outsourcing computation of
matrix multiplication with the consideration of both efficiency
and security for the whole scheme. In our previous research,
we presents a delegation scheme (EPP-DMM) for one-matrix-
constant matrix multiplication in amortized model. Though
under the premise of security and efficiency, the security anal-
ysis of original paper is not adequate and the efficiency also
has room for improvement.

As a development, in this paper, the main contributions can
be described as follows.

1) The applicability of this paper is expanded, while this
paper can be applied for two different functions of
matrix multiplication. As the outsourcing function of
original paper is matrix multiplication with one constant
matrix, this paper successfully expands the scheme for
another matrix multiplication, of which two matrices are
variable.

2) The efficiency of this paper is further enhanced com-
pared with original version and other schemes. Changing

Fig. 1. System model.

the verification process, the scheme can be improved
especially for computing overhead.

3) In security, inputs and outputs can be protected both for
the two different functions. Meanwhile, we present the
precise security analysis for the unforgeability of proof.

The rest of this paper is structured as follows. To present the
basic condition our algorithm faced, we describe the problem
formulation in Section II, which contains security require-
ments, system, and function models. In Section III, we shows
definitions for our scheme, while Section IV presents the detail
of our scheme. Besides, this paper conducts security analysis
and performance evaluation in Sections V and VI, respectively,
to support itself. In the end of Section VII, we conclude this
paper.

II. PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, the system model, in this paper, has
three entities.

1) Client: As a party with limited computing resources,
the client can outsource the heavy task to the other
parties, i.e., the cloud server. Therefore, before sending
the computation request to the cloud server, the client
will upload the computation data of requesting function
to the server in advance, and then generates the con-
fidential key SK and the published key PK. Utilizing
the keys, the client can generate the verification data
VT and V to prove the result, and conduct encryption
and decryption mechanism to insure the privacy of the
inputs and outputs. If necessary, the client will verify
the result by itself through the data returned by the
server.

2) Cloud Server: With the considerable ability in storage
and computation, the server can not only can storage
huge data for the client, but also conduct calculation
for it. When receiving the request from the client, the
server computes the function results together with the
corresponding verification proof VP, both of which will
be sent to the client or the third party.

3) Third Party: The third party, which is credible, can con-
duct verification produce for the client when necessary.
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Utilizing the verification data, it can verify the result
provided by the cloud server.

B. Function Model

In this paper, we design two schemes for two different func-
tions of matrix multiplication. In this paper, both two functions
are conducted in amortized model, which means that we focus
on computing for many times. As it is difficult for client to
compute the operations of huge data, it is necessary to out-
source the matrix multiplication to the server. According to the
amortized model in which the client can conduct a one-time
expensive phase in advance and proceed with multiple times
of online phase as request, those two matrix multiplication
functions can be described as follows.

1) Matrix Multiplication With Constant Matrix: We define
a function Y = F(X) = MX, where M is fixed in matrix multi-
plication and the input X changes according to the demand of
the client. In the amortized model of delegation, this function
can be requested for many times. Due to the fixed matrix M,
in the preprocessing phase, some data can be calculated only
for one time in advance. When the client needs the function
result of input X, it only generates some data related to the
input X.

2) Matrix Multiplication With Two Alterable Matrices:
Here, we present another function Y = F(X(1), X(2)) =
X(1) · X(2), in which the matrices of multiplication is alter-
able obviously. Hence, under the amortized function model,
the inputs X(1) and X(2) can be chosen from the databases
D(1) and D(2) [42], respectively, which means inputs of func-
tion F(X(1), X(2)) are all from databases, where each matrix
is remarked with identity id. This kinds of function can be
applied to the multiplication of matrices with limited num-
ber. Considering the one-time cost of preprocessing phase, all
matrices of databases D(1) and D(2) together with the corre-
sponding verification data are disposed before being uploaded.
When requesting, the client sends tuple (id1, id2) as the
computation query of function F(X(1), X(2)).

We define an inquiry mechanism that the information,
having been requested id tuple together with corresponding
computation results and verification proofs, will be kept in the
cloud server. If (id1, id2) has been requested, the server can
return the results and proofs without computation, otherwise,
it computes for the client.

C. Security Requirements

As the security of outsourcing scheme is badly needed all
the way, we also consider it in this paper, where the security
requirements are summarized into two aspects.

1) Data Privacy: As inputs and outputs may contain sensi-
tive data of the client, if them are exposed to the cloud
server, there is a great risk for those data to be abused
by the spiteful adversary. In case of revealing privacy of
itself, the client protects the inputs through encryption
before uploading, and decrypts output in the end.

2) Proof Unforgeability: The cloud server which is the ser-
vice device for many clients cannot be fully secure.
Naturally, the results returned by the server should be

validated, while the verification proof for authentication
will also be returned. As the significance of this proof,
we must make sure it cannot be forged to acquire the
real results.

III. BACKGROUND AND DEFINITIONS

A. Computation Definitions

Let G, G0, and G
′ be three cyclic groups of multiplication

with the same prime order q. Then an asymmetric bilinear
map e: G×G0 → G

′ can be set up with some properties as
follows.

1) Bilinearity: For any a, b ∈ Z
∗
q, and any g, h ∈ G, G0

separately, e(ga, hb) = e(g, h)ab.
2) Nondegeneracy: There exist two data g ∈ G, h ∈ G that

satisfy the equation e(g, h) �= 1.
3) Efficiency: For any g ∈ G, h ∈ G0, using a polynomial

time algorithm related to the security parameter, e(g, h)

can be acquired efficiently.
Definition 1 [Co-Computational Diffie–Hellman Problem

(co-CDH)]: Let g and g0 be the generators of G and G0,
respectively. Randomly chose numbers a and b (a, b ∈ Z

∗
q).

For any probabilistic polynomial time (PPT) algorithm adver-
sary, it seems hard to get gab in non-negligible overhead only
using g, g0, ga, and gb

0.
In the scheme, according to asymmetric bilinear map

described above, the cloud server will denote the following
parameters with a security parameter κ as:

params = (q, g1, g2, g0, G, G0, G
′, e
)← G(1κ)

where g1 and g2 are two generators of G, and g0 is a generator
of G0. Then, it randomly selects three hash functions with
collision-resistant, where h1 : Z

∗
q → {0, 1}∗, h2 : Z

∗
q → {0, 1}∗

and h3 : Z
∗
q → {0, 1}∗.

B. Verifiable Computation

A verifiable computation scheme for outsourcing enables
the client to outsource the heavy computation task of func-
tions to any untrusted server, where the client can also verify
the correctness of the results returned by the server. Taking
efficiency and privacy into consideration, this paper can not
only verify the results in public but also protect the input and
output both in low overhead.

Let f1 and f2 be the function F(X) and F(X(1), X(2)), sep-
arately. As outsourcing schemes have some differences in
functions f1 and f2, our schemes can be described as follows.

Preprocessing(f1,κ ,R)→(SK,PK,VT,V,(β, γ )): In this phase,
the client mainly computes verification and encryption infor-
mation offline. For function f1, the client first computes the
secret key SK for whole scheme together with the public key
PK and public verification key V for verification. Besides,
the client will also compute verification tag VT for the server
to compute verification proof and encryption data (β, γ ) for
encryption and decryption. Surely, for function f2, there are
some differences. The client should encrypt inputs in advance
and generate keys except the public verification key V . The
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algorithm can be described as

Preprocessing
(

f2, κ, R,
(

X̃(1), id1

)
,
(

X̃(2), id2

))

→
(

SK, PK, VT,
(

X̃(1), X̃(2)
)
, β, (γ1, γ2)

)
.

Requesting(f1, (X, idx), β) → (X̃): In the phase, the client
sends computation request to the cloud server. For function
f1, the input should be encrypted before sending. However,
as for the function f2 the client already encrypts all input
matrices in advance, it only generates the public verifica-
tion key V in this phase. The algorithm can be described as
Requesting(f2, SK, (id1, id2))→ (V).

Computing(f1, X̃, VT, idx)→ (̃Y, VP): According to different
functions, the cloud server computes the result Ỹ , and uses the
verification tag VT to acquire the verification proof VP of Ỹ .
For function f2, the algorithm is

Computing
(

f2,
(

X̃(1), id1

)
,
(

X̃(2), id2

)
, VT

)
→ (Ỹ, VP).

Verifying(f1/f2, Ỹ , VP, PK, V, idx/(id1, id2))→ Ỹ∪⊥: In this
phase, the client can confirm the correctness of results through
the third party, according to the verification data VP and V . If
the third party proves the validity of Ỹ , the client accepts the
result Ỹ , otherwise, refuses.

Decrypting(f1/f2, Ỹ, γ /(γ1, γ2), idx/(id1, id2)) → Y: After
conforming the correctness of result computed by the server,
the client should decrypt Ỹ to get final result Y . Using decryp-
tion divisors γ /(γ1, γ2), this progress can be efficient for
function f1/f2.

C. Security Definitions

As the verification proof VP is used to validate the result,
it is necessary to prove the unforgeability of proof. In the
following, we define an experiment Exp1κ

A for the verifiable
delegation scheme, which is under an adaptive chosen-message
attack.

Step 1: Shown in the phase Preprocessing, the challenger
generates the secret key SK and the public key PK with the
security parameter κ . Then, the adversary A can get the public
key PK. Naturally, the adversary A can acquire PK.

Step 2: For one of functions F(X) and F(X(1), X(2)), the
adversary A can query the challenger the verification message
of chosen function inputs on the discrete time, adaptively. For
function F(X), the adversary A can obtain the verification tags
VT and the public verification key V in Preprocessing algo-
rithm before sending the query about chosen input X to the
challenger in Requesting. For function F(X(1), X(2)), the chal-
lenger sends VT to A in Preprocessing. Then, after sending the
identifications of adaptively chosen inputs to the challenger, A
obtains V from the challenger.

Step 3: In this step, a client requires the adversary A to
evaluate the function F(X) or F(X(1), X(2)), where the inputs
required by the client have been chosen by A.

Step 4: Using the information it gets, A returns a result Y
together with the verification proof VP, where Y �= F(X) or
Y �= F(X(1), X(2)). If Y can satisfy all conditions of verification
process and Y �= F(X) or Y �= F(X(1), X(2)), the adversary A
wins the experiment.

TABLE I
NOTATIONS

Definition 2: We say that a verifiable outsourcing scheme
is secure, if the probability that any PPT algorithm adversary
A succeeds in winning the experiment Exp1κ

A is negligible.

IV. PROPOSED SCHEME

In the preliminary conference version (EPP-DMM), this
paper presents an outsourcing scheme for matrix multiplica-
tion F(X) = MX. However, the verification party must verify
the each element of the result, so the client should produce
the verification tags for each element. As a fact, this step can
cause more overhead. Besides, the matrix M is fixed, and the
final results depend on X. The structure of matrix multiplica-
tion is single, which restricts the application to a great extent.
This paper mainly focuses on those two sides, and the new
contribution can be described as follows.

1) Avoiding verifying the results by, respectively, proving
the correctness of each element, we optimize the scheme
to reduce computation overhead. In the new scheme, we
only need verify the result using vector as the verifi-
cation unit. This change improves performance in many
sides, especially in computation overhead which reduces
from O(n2) to O(n). When the scheme is applied to a
great many calculation of big data, this change, out of
question, can bring huge benefits.

2) In the scheme, except function F(X), we expand our
scheme to the outsourcing model of another function
F(X(1), X(2)). In function F(X(1), X(2)), there are two
inputs, which means both two matrices of matrix mul-
tiplication are inconstant. When the scheme can be
applied to two function models, the applicability is
enhanced to a certain extant.

Besides, the main notions are supplied in Table I.

A. Progress-Optimized Outsourcing Scheme for Matrix
Multiplication

In this section, we propose a scheme to optimize the veri-
fication progress for the function F(X). We can define matrix
X as X = [�x1 �x2 . . . �xn3 ], and the output

Y = MX = [M · �x1 M · �x2 . . . M · �xk . . . M · �xn3

]
(1)

where M ∈ Z
n1×n2
q , X ∈ Z

n2×n3
q . The process of verifi-

cation can be conducted for each operation of M · �xk. In
delegation, the client only sends the computing request to
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Algorithm 1 Preprocessing for the Scheme POME

Input: 1k, M
Output: SK, PK, VT , V

1: Randomly choose three numbers from Z
∗
q, namely sk1 =

a, sk2 = b and sk3 = c
2: Randomly generate a random row vector �l ∈ Z

n1
q

3: Compute pk1 = ga
0, pk2 = (gbli

2 )n1 and pk3 = gc
0

4: Compute the row vector �m = �l ·M
5: for j = 1 to n2 do

6: Compute μj = (g
∑n1

i=1 h1(i,j,sk1)

1 g
∑n1

i=1 h2(i,j,sk2)+mj

2 )
sk1sk2

,

μ′j = (g
∑n1

i=1 h1(i,j,sk1)

1 g
∑n1

i=1 h2(i,j,sk2)

2 )
sk2

and μ′′j = (g
∑n1

i=1 h1(i,j,sk1)

1 g
∑n1

i=1 h2(i,j,sk2)

2 )
sk2sk3

7: end for

8: Compute ν = (g
∑n1

i=1

∑n2
j=1 h1(i,j,sk1)

1 g
∑n1

i=1

∑n2
j=1 h2(i,j,sk2)

2 )sk2

9: The secret key SK = (sk1, sk2, sk3)

the public key PK = (pk1, pk2, pk3)

10: The verification tag VT = ( �μ, �μ′, �μ′′)
11: The public verification key V = ν

12: return SK, PK, VT , V

the cloud server, which means there is no need to compute
data in Requesting phase. The main algorithm including three
phases, i.e., Preprocessing, Computing, Verifying, is presented
as follows.

1) Preprocessing: As the main task of the client is to
generate keys and proof tags in this phase, the generat-
ing process of verification data is changed compared with
original version. In Algorithm 1, we define a random row
vector �l to deal with the matrix M, where the row vector
�m = �l ·M. Then verification progress can be conducted for the
equation

�l · �yk =
n1∑

i=1

liyi,k =
n2∑

j=1

mjxj,k = �m · �xk. (2)

Accordingly, the public key pk2 is a vector, where pk2,i = gbli
2 .

And the dimension of the verification tag VT can be reduced
from 2-D to 1-D, while the public verification key V changes
to a number of group G.

2) Requesting: In this phase, the client chooses the input X
for the function F(X). Surely, the client will deal with the input
X into X̃ before sending it to the server. With all things being
prepared, the client sends to the server X̃ as the computation
request of function F(X).

3) Computing: When the cloud server receives the com-
puting request from the client, it must compute according to
Algorithm 2. The server computes the function Y = F(X)

after receiving the input X with the identification idx from the
client. Likewise, the verification proof VP is calculated for ver-
ification, where VP = (ω, ω′, ω′′). The proof VP of different
k ∈ [1, n3] can be used to verify the different column vectors
of the output Y .

4) Verifying: In this phase, the third party verifies the
result using Algorithm 3. According to (1), it verifies one

Algorithm 2 Computing for the Scheme POMM
Input: M, (X, idx), VT
Output: Y , VP

1: Y = MX
2: for k = 1 to n3 do
3: Compute ωk = ∏n2

j=1 (μj)
xj,k , ω′k =

∏n2
j=1 (μ′j)

xj,k and

ω′′k =
∏n2

j=1 (μ′′j )
xj,k+∑n1

i=1h3(i,k,idx)

4: end for
5: The verification proof VP = (ω, ω′, ω′′)
6: return Y , VP

Algorithm 3 Verifying for the Scheme POMM
Input: Y , VP, V , PK
Output: Y‖ ⊥

1: for k = 1 to n3 do
2: if

e
(
ω′′k , g0

) = e

(

ω′k
n1∏

i=1

νh3(i,k,idx), pk3

)

(3)

and

e(ωk, g0) = e

(

ω′k
n1∏

i=1

(
pk2,i

)yi,k , pk1

)

(4)

then
3: Set number t=1
4: else
5: Set number t=0
6: break
7: end if
8: end for
9: if t=1 then

10: return Y
11: else
12: return ⊥
13: end if

column of the result Y at a time. If there exists one col-
umn that cannot satisfy any of two verification equations, the
result Y must be refused. That is to say, if the result Y is
true, each column of Y should content both two verification
equations.

Necessity: In this phase, the algorithm has two verifica-
tion equation, and both of them are necessary. In (3), it
mainly checks the correctness of ω′, while it proves the
result �yk using (4). If we ignore (3), the server can con-
struct the false data (�y′k, w′) easily by the equation w′ =
ω′k
∏n1

i=1 (pk2,i)
yi,k−y′i,k .

Correctness: To prove the correctness of scheme POMM,
we focus on two sides as follows.

1) If ω′k is valid, then (3) holds.
According to Algorithm 1, we can get equations ν =

(g
∑n1

i=1

∑n2
j=1 h1(i,j,sk1)

1 g
∑n1

i=1

∑n2
j=1 h2(i,j,sk2)

2 )sk2 = ∏n2
j=1 μ′j and

μ′′j = (g
∑n1

i=1 h1(i,j,sk1)

1 g
∑n1

i=1 h2(i,j,sk2)

2 )
sk2sk3

= (μ′j)sk3 .
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Then, it is easy to verify the correctness of (3) through
equation

e
(
ω′′k , g0

) = e

⎛

⎝
n2∏

j=1

(
μ′′j
)xj,k+∑n1

i=1h3(i,k,idx)

, g0

⎞

⎠

= e

⎛

⎝
n2∏

j=1

((
μ′j
)sk3

)xj,k+∑n1
i=1h3(i,k,idx)

, g0

⎞

⎠

= e

⎛

⎝
n2∏

j=1

(
μ′j
)xj,k

n2∏

j=1

(
μ′j
)∑n1

i=1h3(i,k,idx)

, gsk3
0

⎞

⎠

= e

⎛

⎝
n2∏

j=1

(
μ′j
)xj,k

ν
∑n1

i=1h3(i,k,idx), gsk3
0

⎞

⎠

= e

(

ω′k
n1∏

i=1

νh3(i,k,idx), pk3

)

. (5)

2) If �yk is valid, then (4) holds.
According to Algorithm 1, we can also acquire the equation

μj = (g
∑n1

i=1 h1(i,j,sk1)

1 g
∑n1

i=1 h2(i,j,sk2)+mj

2 )
sk1sk2

= (μ′jg
bmj
2 )sk1 .

Then it we can use the following equation to prove the
availability of the verification proofs:

e(ωk, g0) = e

⎛

⎝
n2∏

j=1

(
μj
)xj,k , g0

⎞

⎠

= e

⎛

⎝
n2∏

j=1

((
μ′jg

bmj
2

)sk1
)xj,k

, g0

⎞

⎠

= e

⎛

⎝
n2∏

j=1

(
μ′j
)xj,k

g
b
∑n2

j=1 mjxj,k

2 , gsk1
0

⎞

⎠

= e

⎛

⎝

⎛

⎝
n2∏

j=1

(
μ′j
)xj,k

⎞

⎠g
b
∑n1

i=1 liyi,k

2 , gsk1
0

⎞

⎠

= e

(

ω′k
n1∏

i=1

(
gbli

2

)yi,k
, pk1

)

= e

(

ω′k
n1∏

i=1

(
pk2,i

)yi,k , pk1

)

. (6)

Flexibility: The algorithm we described above is designed
for the verification progress conducted by the third party. It
is flexible for the client to conduct the verification progress
by itself as follows. If �yk is valid, then two equations
ω′′k = (ω′k

∏n1
i=1 νh3(i,k,idx))c = (ω′kν

∑n1
i=1 h3(i,k,idx))c and ωk =

(ω′k
∏n1

i=1 (pk2,i)
yi,k)a = (ω′kg

∑n1
i=1 liyi,k

2 )ab are hold.

B. Application Function-Expanded Outsourcing Scheme for
Matrix Multiplication

In matrix multiplication of function F(X), the matrix M is
constant while only the input X changes each time. This
restricts the application to a large extent. In this scheme,
we extent the original scheme and apply it to a new func-
tion F(X(1), X(2)), where Y = F(X(1), X(2)) = X(1)X(2)

Algorithm 4 Preprocessing for the Scheme AFEMM

Input: 1k, (X(1), id1), (X(2), id2)

Output: SK, PK, VT
1: Randomly choose four numbers from Z

∗
q, namely sk1 = a,

sk2 = b, sk3 = c and sk4 = d
2: Randomly generate a random row vector �l ∈ Z

n1
q

3: Compute pk1 = ga
0, pk2 = (gbli

2 )n1 and pk3 = gc
0

4: Compute the row vector �χ = �l · X(1)

5: for j = 1 to n2 do
6: Compute

μ
(1)
j = (g

∑n1
i=1 h1(i,j||id1,sk1)

1 g
∑n1

i=1 h2(i,j||id1,sk2)+χj

2 )
sk1sk2

,

μ′j
(1) = (g

∑n1
i=1 h1(i,j||id1,sk1)+d

1 g
∑n1

i=1 h2(i,j||id1,sk2)

2 )
sk2

,

μ′′j
(1) = (g

∑n1
i=1 h1(i,j||id1,sk1)

1 g
∑n1

i=1 h2(i,j||id1,sk2)

2 )
sk2sk3

for matrix X(1)

7: Compute

μ
(2)
j = (g

∑n3
k=1 h1(k,j||id2,sk1)+d

1 g
∑n3

k=1 h2(k,j||id2,sk2)

2 )
sk1sk2

,

μ′j
(2) = (g

∑n3
k=1 h1(k,j||id2,sk1)

1 g
∑n3

k=1 h2(k,j||id2,sk2)

2 )
sk2

and

μ′′j
(2) = (g

∑n3
k=1 h1(k,j||id2,sk1)+d

1 g
∑n3

k=1 h2(k,j||id2,sk2)

2 )
sk2sk3

for matrix X(2)

8: end for
9: The secret key SK = (sk1, sk2, sk3, sk4)

the public key PK = (pk1, pk2, pk3)

10: The verification tag VT(1) = ( �μ(1), �μ′(1)
, �μ′′(1)

) of X(1)

The verification tag VT(2) = ( �μ(2), �μ′(2)
, �μ′′(2)

) of X(2)

Let VT = (VT(1), VT(2))

11: return SK, PK, VT

(X(1) ∈ D(1), X(2) ∈ D(2)). Likewise, we conduct the
verification phase for each operation of X(1) · �x(2)

k , similar to
the scheme POMM. As the input X(1) and X(2) are decided
in the phase Requesting, this scheme involves four phases,
i.e., Preprocessing, Requesting, Computing, and Verifying,
involved.

1) Preprocessing: Similar to the scheme POMM, we
acquire the row vector �χ ( �χ = �l · X(1)), and (7) can be used
to verification

�l · �yk =
n1∑

i=1

liyi,k =
n2∑

j=1

χjx
(2)
j,k = �χ · �x(2)

k . (7)

In the function F(X(1), X(2)), every matrix of database D(1)

and D(2) should be preprocessed before being sent to the cloud
server. As shown in Algorithm 4, we only consider one time
operation for (X(1), X(2)). In this model, each matrix has its
own identification, where id1 and id2 belong to X(1) and X(2),
separately. Besides, we produce corresponding verification tag
VT for inputs (X(1), X(2)), and the secret key SK changes to
four numbers. After all preprocessing for D(1) and D(2), the
data, e.g., VT , (X(1), id1) and (X(2), id2), should be sent to the
server in advance, where the client only stores the id of each
matrix to stand for the matrices in database.

2) Requesting: In this phase, the client sends the computing
request to the cloud server, which means the matrices X(1) and
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Algorithm 5 Computing for the Scheme AFEMM

Input: (X(1), id1), (X(2), id2), VT
Output: Y , VP

1: Y = X(1)X(2)

2: for k = 1 to n3 do
3: Compute

ωk = ∏n2
j=1 (μ

(1)
j μ

(2)
j )

x(2)
j,k , ω′k =

∏n2
j=1 (μ

′(1)
j μ

′(2)
j )

x(2)
j,k

and ω′′k =
∏n2

j=1 (μ
′′(1)
j μ

′′(2)
j )

x(2)
j,k+

∑n1
i=1h3(i,k,id1||id2)

4: end for
5: The verification proof VP = (ω, ω′, ω′′)
6: return Y , VP

X(2) should be determined for the function F(X(1), X(2)). Then,
we obtain summing values of hash values, where
{

H11 = ∑n1
i=1

∑n2
j=1 h1(i, j||id1, sk1), H12 =∑n3

k=1

∑n2
j=1 h1(i, j||id2, sk1)

H21 = ∑n1
i=1

∑n2
j=1 h2(i, j||id1, sk2), H22 =∑n3

k=1

∑n2
j=1 h2(i, j||id2, sk2).

Let the verification key V as

V = ν =
(

gH11+H12+dn2
1 gH21+H22

2

)sk2
. (8)

The client only sends the cloud server (id1, id2) as the
computing request, and publishes the verification key V .

3) Computing: According to the request (id1, id2) from the
client, the cloud server can acquire the related information
from its database, which includes a tuple (Id, Y ′, Vp). The
tuple records the data of precious computing task, where Id
is the set of elements (id′, id′′), Y ′, and Vp are the sets of the
corresponding calculated data.

If (id1, id2) requested by the client belongs to Id, the server
can directly return corresponding result Y ∈ Y ′ and verification
proof VP ∈ Vp. Otherwise, the server calculates the function
F(X(1), X(2)) together with the verification proof VP for the
client. After computing, the cloud server not only sends Y
and VP to the client, but also updates ((id1, id2), Y, VP) to
the tuple (Id, Y ′, Vp).

4) Verifying: Through the function is changed to
F(X(1), X(2)), the verification process is similar. Equation (4)
is also adopted to verify the result Y , while another equation is
a little different. The changed identification information makes
the input of hash function h3 become id1||id2, and the another
verification equation can be expressed as

e
(
ω′′k , g0

) = e

(

ω′k
n1∏

i=1

νh3(i,k,id1||id2), pk3

)

. (9)

If the return is Y , the result Y proves to be true, otherwise
refuse the result.

In this phase, it also has properties of necessity, correctness,
and flexibility. Obviously, the property necessity is tenable.
Just like the scheme POMM, the scheme has the flexibility
when changing the input idx to id1||id2.

Correctness: To prove the correctness of this scheme, we
compare it with the scheme POMM.

Although the verification proofs VT(1) and VT(2) are related
to two input matrices, there are many places in common to
prove the correctness of (4) and (9).

Fig. 2. Encryption scheme for POMM.

According to Algorithm 4, we can also get the equation
ν = ((

∏n2
j=1 gd

1)g
H11+H12
1 gH21+H22

2 )sk2 = ∏n2
j=1(μ

′(1)
j μ

′(2)
j ) and

μ
′′(1)
j μ

′′(2)
j = (μ

′(1)
j μ

′(2)
j )sk3 . Then (9) proves to be true,

like (5), when putting two equations above into it.
According to Algorithm 4, we can acquire equations

μ
(1)
j μ

(2)
j = (μ

′(1)
j μ

′(2)
j g

bmj
2 )sk1 . Putting this equation into (4),

the equation is tenable.

C. Encryption Scheme

As inputs may expose the sensitive information of the client,
the client must preserve the privacy of inputs after sending
them to the cloud server [43]. In this section, we propose an
encryption scheme to ensure the security.

For each matrix of inputs, we encrypt it into X̃. Then two
functions can be described as Ỹ = F(X̃) and Ỹ = F(X̃(1), X̃(2)).
Thanks to the different functions for application, the encryp-
tion and decryption courses of two schemes are distinguishing
in some way.

1) Encryption Scheme for POMM: As shown in Fig. 2, we
use (10) to encrypt the input X in Requesting phase, while in
phase Preprocessing, the client will construct encryption and
decryption divisors in advance. In the Requesting phase, the
client sends the request to the server X̃ rather than X. And
(β, γ ) is kept in secret by the client. Another encryption divi-
sor α, related to the input, is obtained through hash function
when needed each time. As Mβ = (

∑n2
j=1 mi,jbj)n1 = γ , we

give the demonstration to prove the correctness of (11) as

Y = MX = M
(
X̃ − βαT) = Ỹ − (Mβ)αT = Ỹ − γαT . (12)

2) Encryption Scheme for AFEMM: In Fig. 3, we use (13)
to protect the inputs, and get the final result Y by (14).
After encrypting all the matrices of database, the client
only sends the blind inputs, e.g., (X̃(1), X̃(2)), to the cloud
server. Because α1 and α2 are constructed by hash functions,
the client only needs to save β and (γ1, γ2). As X(1)β =
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Fig. 3. Encryption scheme for AFEMM.

(
∑n2

j=1 x(1)
i,j bj)n1 = γ1 and βX̃(2) = (

∑n2
j=1 bj̃x

(2)
i,j )1×n1 = γ T

2 ,
we can prove the correctness of (14) as follows:

Y = X(1)X(2) = X(1)
(

X̃(2) − βαT
2

)

=
(

X̃(1) − α1β
T
)

X̃(2) − X(1)βαT
2

= X̃(1)X̃(2) − α1

(
βTX̃(2)

)
−
(

X(1)β
)
αT

2

= Ỹ − γ1α2
T − α1γ

T
2 . (15)

V. SECURITY ANALYSIS

A. Data Privacy

In schemes, the client will encrypt the inputs before upload-
ing to the server. As the inputs of functions F(X) and
F(X(2), X(2)) are protected in same theory, the input X of func-
tion F(X) is disposed as X̃ = X + βαT in (10), for instance.
An adversary knows nothing about β and sk1, and the values
of α change with the different input, where the vectors β is
randomly chosen, α is composed by the hash function related
to the secret key sk1 and input id. It is hard for the adversary
to recover the original input X in consideration of the indistin-
guishability of matrix. In the similar way, even if the adversary
possesses the result Ỹ , it also cannot obtains anything matters
from it.

B. Proof Unforgeability

To prove the unforgeability of proof in our scheme, we con-
duct the following game in the random model for different
functions. Besides, in this section, we consider the process of
publicly verification as an example.

Theorem 1: According to the assumption co-CDH, the pub-
licly verifiable outsourcing scheme POMM is secure in the
random model for successfully against the adaptive chosen-
message attack.

Proof: According to the scheme POMM, the verification
process of function Y = F(X) can be treated as the verification
process of function �yk = F(�xk). As there are two equations for
verification, we prove them, respectively.

1) If ω′′k can pass the verification (3), then ω′k is valid.
Suppose ω′k is one of the verification proof returned by the

adversary A and ω′∗k is the real one. Both ω′k and ω′∗k can
satisfy (3), where ω′k �= ω′∗k . Then we can get the equation as

ω′′k =
(

ω′k
n1∏

i=1

νh3(i,k,idx)

)c

=
(

ω′k
ω′∗k
· ω′∗k

n1∏

i=1

νh3(i,k,idx)

)c

=
(

ω′k
ω′∗k

)c

· ω′′k .

Since ω′k �= ω′∗k and c �= 0, ω′′k = (ω′k/ω′∗k )c · ω′′k is false
obviously. Hence, if ω′′k can pass the verification (3), ω′k = ω′∗k .

2) If ω′k is valid and ωk can pass the verification (4), then
�yk is valid.

Suppose that the probability of the adversary A winning
in the experiment Exp1κ

A is negligible. There, we construct an
adversary A∗ to solve the problem co-CDH collaborating with
A. That is, possessing a co-CDH parameters (g0, g2, ga

0, gblt
2 ),

the adversary A∗ can calculate gablt
2 in nonignorable probabil-

ity. In this part, A∗ randomly chooses a public key gblt
2 (t ∈ n1)

from pk2 = (gbli
2 )n1 .

Step 1: As the adversary A∗ knows the parameters
(g0, g1, g2, pk1, pk2, pk3), it redefines parameters g∗1, pk∗2 and
pk∗3. A∗ constructs g∗1 = g2

−ε−1
and pk∗3 = gc∗

0 , where ran-
domly chosen numbers ε, c∗ ∈ Z

∗
q. After generating a random

row vector �l∗ ∈ Z
n1
q , A∗ computes pk∗2 = (g

bltl∗i
2 )n1 . Finally,

new system parameters g∗1, pk∗2 and pk∗3 are updated to A.
Step 2: The adversary A can query the adversary A∗ the ver-

ification message of chosen inputs on the discrete time, adap-
tively. It requests the calculation of function F(�xk) = M · �xk.

The adversary A∗ computes the row vector �m∗ = �l∗ · M
and chooses some random numbers from Z

∗
q to construct an

array Z = (zj)n2 . Let �m = lt �m∗, ∑n1
i=1 h1(i, j, sk1) = εzj

and
∑n1

i=1 h2(i, j, sk2) = −mj + zj. Then it can recompute
verification tags VT = (μ,μ′, μ′′), of which elements are
calculated as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μj =
((

g∗1
)εzj g(−mj+zj)+mj

2

)ab
= 1

μ′j =
((

g∗1
)εzj g

−mj+zj
2

)b = g
−bltm∗j
2

μ′′j =
((

g∗1
)εzj g

−mj+zj
2

)bc∗ = g
−bltm∗j c∗
2 .

Besides, taking all defined data into the equation of V , A∗ also
gets the public verification key V . Surely, VT will be sent to A.
Because VT and V are calculated strictly following equations
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in scheme POMM, the verification equations are tenable if the
results and proofs returned by the server are correct.

Step 3: Next, A∗ requests the adversary A to evaluate the
result of function F(X) and the corresponding verification
proof VP.

Step 4: Returned by A, the result Y can be verified using the
verification proof VP. According to the experiment Exp1κ

A we
supposed above, Y can pass all equations of the verification
process, while Y �= F(X). Let Y∗ = F(X) be the real result.
Then we can acquire the equation as

ω =
(

ω′
n1∏

i=1

pk
yi,k
2

)a

=
⎛

⎝
n2∏

j=1

(
μj
)xj,k g

∑n1
i=1 bltliyi,k

2

⎞

⎠

a

= g
−∑n2

j=1 bltm∗j xj,k

2 g
∑n1

i=1 bltliyi,k

2

)a

=
(

g
−∑n1

i=1 liy∗i,k+
∑n1

i=1 liyi,k

2

)ablt

= g
ablt

∑n1
i=1 li

(
yi,k−y∗i,k

)

2 . (16)

The adversary A∗ can acquire the equation gablt
2 =

ω
(
∑n1

i=1 li(yi,k−y∗i,k))
−1

when
∑n1

i=1 li(yi,k − y∗i,k) �= 0. As A∗ has

a knowledge of (g0, g2, ga
0, gblt

2 ), it can obtain gablt
2 from A.

Surely, while yi,k �= y∗i,k, if
∑n1

i=1 li(yi,k− y∗i,k) = 0, A∗ should
reselect new vector �l∗ to conduct this challenge game.

In the conclusion, in the random model, the publicly ver-
ifiable outsourcing scheme POMM can against the adaptive
chosen-message attack under the assumption co-CDH.

Theorem 2: According to the assumption co-CDH, the pub-
licly verifiable outsourcing scheme AFEMM is secure in the
random model for successfully against the adaptive chosen-
message attack.

Proof: Similar to the scheme POMM, the verification pro-
cess of function Y = F(X(1), X(2)) can also be treated as the
verification process of function �yk = F(X(1), �x(2)

k ) in AFEMM.
Then we prove the scheme in the same way as follows.

1) If ω′′k can pass the verification equation (3), then ω′k is
valid. As only hash function of (9) is different from (3),
the way of proving ω′k can refer to above process.

2) If ω′k is valid and ωk can pass the verification equa-
tion (4), then �yk is valid.

Same as the demonstration of POMM, in this part, the
adversary A∗ also has the knowledge of the co-CDH param-
eters (g0, g2, ga

0, gblt
2 ).

Step 1: As the adversary A∗ knows the parameters
(g0, g1, g2, pk1, pk2, pk3), it should also redefine parameters

g∗1 = g2
−ε−1

, pk∗2 = (g
bltl∗i
2 )n1 and pk∗3 = gc∗

0 . A∗ constructs
g∗1 and pk∗3, where randomly chosen numbers ε, c∗ ∈ Z

∗
q and a

random row vector �l∗ ∈ Z
n1
q . Finally, new system parameters

g∗1, pk∗2, and pk∗3 are updated to A.
Step 2: The adversary A queries the adversary A∗ the

verification information of chosen inputs on the discrete

TABLE II
NOTATIONS

time, adaptively. It requests the calculation of function
F(X(1), X(2)) = X(1)X(2).

The adversary A∗ computes the row vector �χ∗ = �l∗·X(1).
Besides, it chooses some random numbers from Z

∗
q to

construct an array Z = (zj)n2 together with a new ran-
domly chosen number b∗ of Z

∗
q. It defines �χ = lt �χ∗

and d = εd∗lt. Let
∑n1

i=1 h1(i, j||id1, sk1) = −εd∗lt,∑n3
k=1 h1(k, j||id2, sk1) = εzj,

∑n1
i=1 h2(i, j||id1, sk2) = −χj −

d∗lt and
∑n3

k=1 h2(k, j||id2, sk2) = zj + d∗lt. Then it can
recompute verification tags VT(1) = ( �μ(1), �μ′(1)

, �μ′′(1)
) and

VT(2) = ( �μ(2), �μ′(2)
, �μ′′(2)

) for matrices X(1) and X(2), of
which elements are calculated as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ
(1)
j = μ

(2)
j = 1

μ′j
(1) = g

−blt
(
χ∗j +b∗

)

2 , μ′j
(2) = gbltb∗

2

μ′′j
(1) = g

−bltχ∗j c∗
2 , μ′′j

(2) = 1.

Similarly, A∗ also gets the public verification key V .
Because VT and V are calculated strictly following equations
in scheme AFEMM, the verification equations are tenable
if the results and proofs returned by the server are correct.
Finally, VT = (VT(1), VT(2)) will be sent to A.

Step 3: Next, A∗ requests the adversary A to evaluate
the result of function F(X(2), X(2)) and the corresponding
verification proof VP.

Step 4: Returned by A, the result Y can be verified using the
verification proof VP. According to the experiment Exp1κ

A we
supposed above, Y can pass all equations of the verification
process, while Y �= F(X(2), X(2)). Let Y∗ = F(X(2), X(2)) be
the real result. Then we can also obtain the equation

ω = g
ablt

∑n1
i=1 li

(
yi,k−y∗i,k

)

2 .

Like step 4 of POMM, while A∗ has a knowledge of
(g0, g2, ga

0, gblt
2 ), it can obtain gablt

2 from A, eventually.
In the conclusion, in the random model, the publicly veri-

fiable outsourcing scheme AFEMM can against the adaptive
chosen-message attack under the assumption co-CDH.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our schemes
comparing with other schemes. Due to the two different
function models, we presents the performance in two parts.
Besides, involved symbols are shown in Table II.
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TABLE III
COMPARISON OF FUNCTIONALITY FOR POMM

TABLE IV
COMPARISON OF COMMUNICATION OVERHEAD FROM

CLIENT TO SERVER FOR POMM

A. Performance Evaluation for POMM

For function model of F(X), we compare our scheme
POMM with other similar schemes, Zhang’s [39], Li’s [40]
and EPP-DMM, where Zhang’s [39] and Li’s [40] are based
on the algebraic PRFs with closed form efficiency, and EPP-
DMM is the initial version of POMM. In the following, we
conduct the evaluation in terms of functionality as well as
communication, computation and storage overhead.

1) Functionality: Shown in Table III, all the schemes can
achieve public verification while only our schemes EPP-DMM
and POMM can verify the results in an efficient way by the
client itself. As Zhang’s [39], which extends the scheme of
Fiore’s [29], designs the encryption scheme for inputs all the
schemes have the mechanism of data protection. We can see
our schemes are more flexible in functionality.

2) Communication Overhead: In scheme POMM, the
server will send the verification proofs and the results to the
verification party, and the verification party only returns
the correct results to the client. Therefore, we only consider
the communication overhead of the client sending to the server
in process Preprocessing and Requesting, and obtain Table IV.
In Preprocessing, the client will send matrix M and verifica-
tion tags VT for one time in advance in amortized model. In
the Table IV, we can see that the communication overhead of
POMM is lower than others, because the size of verification
tags is n2|G| while the size of others is n1n2|G|. Considering
the online process Requesting, the communication overhead is
determined by the computation request times N. In all those
schemes, the client only sends the input data to the server, so
the communication overhead of client to server is n2n3|Zq| for
one time. Therefore, our new scheme POMM is efficient in
communication overhead.

3) Computation Overhead: For the low ability of client in
computation, the computation overhead of the client is the
main factor to improve the efficiency of outsourcing scheme.
In this part, we compare our scheme POMM with other
schemes of phases Preprocessing, Requesting, and Decrypting,
in Table V. In amortized model, the preprocessing phase is
conducted for one time. Hence, decisive phases in computation
cost are the other two phases.

In Preprocessing process, if the computing times is not
large, this process may determine the computation over-
head. According to the Table V, the computation overhead
of Li’s [40] is related to the opposite maximum l, and the
time complexity is O(n3) while the time complexity of oth-
ers is only O(n2). If the matrix involved is large, Li’s [40]
is obviously in low efficiency. Besides, the operation times of
exponentiation in G

′ and bilinear pairing, i.e., T ′ and Tb, are
larger than other operations in those schemes. In this process,
our scheme POMM avoids using those two kinds of operation,
which reduces the computation overhead to a great extent in
Preprocessing. Moreover, as we optimize the process of veri-
fying in scheme POMM, verification tags is also changed in
Preprocessing compared with scheme EPP-DMM. Hence, time
cost O(n) of POMM to generate the verification tags is lower
than time cost O(n2) of EPP-DMM.

In Requesting, schemes EPP-DMM and POMM should
only encrypt the inputs, while other two schemes [39], [40]
also generate the verification tags related to the inputs. In
Decrypting, schemes EPP-DMM and POMM both take n1n3Tz

time cost in decryption. Especially, the overhead of Zhang’s is
O(ex), where the time complexity of exponent O(ex) is larger
than the time cost of O(n2). Besides, the computation overhead
of Li’s in decryption can be ignored. Taking those two phases
into consideration together, EPP-DMM and POMM with over-
head (n1n3 + n2n3)Tz are more efficient than others of which
the overhead are n2n3(Tg+Te+Tb)+Te0+O(ex) in [39] and
(3n2n3 + n3 + 1)Tz + Te + Tb in [40].

In the conclusion, the scheme POMM is most efficient
among four schemes in computation overhead of the client.
To prove this inference both in theory and reality, we pro-
cess the experiment on a computing machine which has the
2.5GHz-processor and 4GB memory. Because of obvious huge
computation overhead in [39], we only compare other three
schemes to research the computation overhead influenced by
the request times N. There, we utilize time consumption to
simulate the computation overhead.

Let all the matrices involved be the square matrices and
the opposite maximum number l in Li’s be l = 2n, where
n1 = n2 = n3 = n = 10000. As shown in Fig. 4, with the
raise of request time N the time consumption of Li’s scheme
is higher than EPP-DMM and POMM obviously. Surely, the
bigger l is, the more inefficient Li’s scheme is. Furthermore,
though the line’s growth trends of EPP-DMM and POMM in
figure are similar, POMM is efficient than EPP-DMM when N
is small oppositely. Obviously, our scheme POMM can achieve
high-efficiency no matter how much the request times N is.

4) Storage Overhead: Considering the storage overhead of
the client, it stores the secret key together with verification and
encryption information. As shown in Table VI, in the schemes
of Li’s and EPP-DMM the storage overheads are related to the
number of request N while the storage overheads of Zhang’s
and POMM are fixed, namely, the client only store the data
produced in the preprocessing phase. In our scheme, many
parameters can be computed once used, especially for the hash
values. Obviously, the overhead of ours, i.e., (2n1+n2+3)|Zq|,
is lower than others, when the stored data of ours only involves
the type of Zq.
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TABLE V
COMPARISON OF COMPUTATION OVERHEAD FOR POMM

Fig. 4. Computation time consumption of the client.

TABLE VI
COMPARISON OF STORAGE OVERHEAD FOR POMM

B. Performance Evaluation for AFEMM

In this section, we compare our scheme AFEMM with
Jia’s [41] and Zhang’s [44], Li’s [40], which are under the
function model of F(X(1), X(2)). In the following, we conduct
the evaluation in terms of functions as well as communication,
computation and storage overhead.

1) Functionality: Similarly, only our scheme AFEMM can
verify the result in the efficient way by the client itself or
by the third party, while Jia’s [41] only verifies the result on
its own and Zhang’s [44] can only conduct the verification
in public. Moreover, Jia’s fails to protect data of output, even
if the inputs uploaded by the client are encrypted. We can
see the functions of our schemes is better according to the
intuitionistic comparison in Table VII.

In function model of F(X(1), X(2)), all the matrices of
database D(1) and D(2) together with verification data will be
sent to the server in advance. Therefore, though this operation
is conducted for one time in amortized model, the communi-
cation overhead of this operation should not be ignored.

TABLE VII
COMPARISON OF FUNCTIONALITY FOR AFEMM

TABLE VIII
COMPARISON OF COMMUNICATION OVERHEAD FOR AEFMM

2) Communication Overhead: In preprocessing phase, the
communication overheads of sending the server related data
of database D(1) are shown in Table VIII. Then, all the three
schemes will send the computation request to the server,
where the overhead is 2|id|. While the overhead of receiv-
ing the results of three schemes is n1n3|Zq|, the client will
all acquire verification proofs with communication overheads
|G′|, n1n3|G′|, and 3n3|G| of schemes Jia’s, Zhang’s, and
AFEMM, respectively.

Although the cost of our scheme is higher than Jia’s for N
times request, the cost of verification tags of ours, i.e., (N1 +
N2)3n2|G|, is lower than other two schemes. To sum up, our
scheme AFEMM is more efficient in communication overhead.

3) Computation Overhead: Comparing our scheme
AFEMM with Jia’s [41] and Zhang’s [44] in computation
overhead of client, we can obtain the Table IX, where there
has four phases, i.e., Preprocessing, Requesting, Verifying,
and Decrypting, involved. Because the client conducts main
task of verification in [41], the verifying process must be
pondered of this scheme.

In Preprocessing, we can see that for each matrix of
database, Jia’s conduct O(n3) operation in Zq, while the high-
est overhead of other two schemes is O(n2). As N1 and N2
is huge under this function model, our scheme is more effi-
cient than Jia’s and Zhang’s according to the comparison in
Table IX.
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TABLE IX
COMPARISON OF COMPUTATION OVERHEAD FOR AFEMM

(a) (b)

Fig. 5. Comparison of computation time consumption of the client.

In online phases, the operation will be conducted for N-
times. For Jia’s scheme, the client takes huge time cost
n1n2Tz + T ′ in Verifying. In Requesting phase, the compu-
tation overhead of ours is (4n2 + 1)Tz + 3Te + Tg which is
lower than n1n3Tz + n1n3Te of Zhang’s while in Decrypting
computation overhead of ours is also smaller than Zhang’s.

Taking all into account, though Jia’s scheme is more effi-
cient in online phases, it presents high cost in Preprocessing.
Therefore, our scheme is optimal in three schemes.

Similarly, we conduct the experiment on the machine with
2.5GHz-processor and 4GB memory to prove above inference
in reality. Utilizing time consumption to represent the compu-
tation overhead, we focus on the overhead influenced by he
request times N.

Let all the matrices involved be the square matrices, where
n1 = n2 = n3 = n = 105. Considering the size of databases
D(1) and D(2), we set N1 = N2 = 104. In Fig. 5(a), we can
see that with the raise of N, the time consumption of Zhang’s
is always significantly higher than our scheme. The bigger N
is, the higher the discrepancy is. As shown in Fig. 5(b), our
scheme is more efficient than Jia’s until N reach to almost
6.4× 109. However, this value is closely related to the size of
databases. With the huge databases, i.e., N1 and N2 are large,
the value of N to reach the critical value can be ignored. In
the conclusion, our scheme successfully present the advantage
in computation.

4) Storage Overhead: According to the function model,
the client will keep id of all the matrices in three schemes
for requesting. Without decryption phase, Jia’s [41] can only
stored the secret key, the storage overhead of which is
(n1 + n3)|Zq|. As Zhang’s [44] and AFEMM are should also
keep the encryption parameters, the storage overhead of ours
is (4 + 2n1)|Zq| + (N1n1 + N2n3)|Zq|, which is lower than

|Zq| + N1(n1 + n2)|Zq| + N2(n2 + n3)|Zq|, the overhead of
Zhang’s. Overall consideration, the storage overhead of our
scheme AFEMM is acceptable.

VII. CONCLUSION

In this paper, on the basis of original scheme, we continually
research on the verifiable outsourcing scheme for matrix mul-
tiplication over amortized model, which can be applied for two
different functions of matrix multiplication particularly. We not
only analyze the security of whole scheme, but also guarantee
the correctness of results. Besides, our scheme outperforms
other existing schemes in communication efficiency, compu-
tation ability, and storage overhead. In a word, this scheme
presents improvements over old versions and has a much more
promising prospect. Surely, as this paper only consider the
operation of matrix multiplication, but the algorithms can also
be applied to the operation of matrix-vector multiplication. In
the future work, we can focus on the delegation of more linear
operations.
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